Problems with car - some solutions

6-cylinder designs with corresponding differences in overall size, weight, engine displacement, and cylinder bores. Four cylinders and power ratings from 19 to 120 hp (14 to 90 kW) were followed in a majority of the models. Severa

Dodane: 08-08-2016 16:07
Problems with car - some solutions oil for Lamborghini

engine development

Engine configuration

Earlier automobile engine development produced a much larger range of engines than is in common use today. Engines have ranged from 1- to 16-cylinder designs with corresponding differences in overall size, weight, engine displacement, and cylinder bores. Four cylinders and power ratings from 19 to 120 hp (14 to 90 kW) were followed in a majority of the models. Several three-cylinder, two-stroke-cycle models were built while most engines had straight or in-line cylinders. There were several V-type models and horizontally opposed two- and four-cylinder makes too. Overhead camshafts were frequently employed. The smaller engines were commonly air-cooled and located at the rear of the vehicle; compression ratios were relatively low. The 1970s and 1980s saw an increased interest in improved fuel economy, which caused a return to smaller V-6 and four-cylinder layouts, with as many as five valves per cylinder to improve efficiency. The Bugatti Veyron 16.4 operates with a W16 engine, meaning that two V8 cylinder layouts are positioned next to each other to create the W shape sharing the same crankshaft.

The largest internal combustion engine ever built is the Wärtsilä-Sulzer RTA96-C, a 14-cylinder, 2-stroke turbocharged diesel engine that was designed to power the Emma M?rsk, the largest container ship in the world. This engine weighs 2,300 tons, and when running at 102 RPM produces 109,000 bhp (80,080 kW) consuming some 13.7 tons of fuel each hour.

Źródło: https://en.wikipedia.org/wiki/Engine


engine oil

Motor oil, engine oil, or engine lubricant is any of various substances (comprising oil enhanced with additives, for example, in many cases, extreme pressure additives) that are used for lubrication of internal combustion engines. The main function of motor oil is to reduce wear on moving parts; it also cleans, inhibits corrosion, improves sealing, and cools the engine by carrying heat away from moving parts.1

Motor oils are derived from petroleum-based and non-petroleum-synthesized chemical compounds. Motor oils today are mainly blended by using base oils composed of hydrocarbons, polyalphaolefins (PAO), and polyinternal olefins2 (PIO), thus organic compounds consisting entirely of carbon and hydrogen. The base oils of some high-performance motor oils contain up to 20% by weight of esters.3

Źródło: https://en.wikipedia.org/wiki/Motor_oil


Properties of engine oils

Most motor oils are made from a heavier, thicker petroleum hydrocarbon base stock derived from crude oil, with additives to improve certain properties. The bulk of a typical motor oil consists of hydrocarbons with between 18 and 34 carbon atoms per molecule.7 One of the most important properties of motor oil in maintaining a lubricating film between moving parts is its viscosity. The viscosity of a liquid can be thought of as its "thickness" or a measure of its resistance to flow. The viscosity must be high enough to maintain a lubricating film, but low enough that the oil can flow around the engine parts under all conditions. The viscosity index is a measure of how much the oil's viscosity changes as temperature changes. A higher viscosity index indicates the viscosity changes less with temperature than a lower viscosity index.

Motor oil must be able to flow adequately at the lowest temperature it is expected to experience in order to minimize metal to metal contact between moving parts upon starting up the engine. The pour point defined first this property of motor oil, as defined by ASTM D97 as "... an index of the lowest temperature of its utility ..." for a given application,8 but the "cold cranking simulator" (CCS, see ASTM D5293-08) and "Mini-Rotary Viscometer" (MRV, see ASTM D3829-02(2007), ASTM D4684-08) are today the properties required in motor oil specs and define the SAE classifications.

Oil is largely composed of hydrocarbons which can burn if ignited. Still another important property of motor oil is its flash point, the lowest temperature at which the oil gives off vapors which can ignite. It is dangerous for the oil in a motor to ignite and burn, so a high flash point is desirable. At a petroleum refinery, fractional distillation separates a motor oil fraction from other crude oil fractions, removing the more volatile components, and therefore increasing the oil's flash point (reducing its tendency to burn).

Another manipulated property of motor oil is its Total base number (TBN), which is a measurement of the reserve alkalinity of an oil, meaning its ability to neutralize acids. The resulting quantity is determined as mg KOH/ (gram of lubricant). Analogously, Total acid number (TAN) is the measure of a lubricant's acidity. Other tests include zinc, phosphorus, or sulfur content, and testing for excessive foaming.

The NOACK volatility (ASTM D-5800) Test determines the physical evaporation loss of lubricants in high temperature service. A maximum of 14% evaporation loss is allowable to meet API SL and ILSAC GF-3 specifications. Some automotive OEM oil specifications require lower than 10%.

Źródło: https://en.wikipedia.org/wiki/Motor_oil



© 2019 http://zarzadzanie.szczecin.pl/